首页> 外文OA文献 >Network meta-analysis: development of a three-level hierarchical modeling approach incorporating dose-related constraints
【2h】

Network meta-analysis: development of a three-level hierarchical modeling approach incorporating dose-related constraints

机译:网络元分析:结合剂量相关约束的三级分层建模方法的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BACKGROUND: Network meta-analysis (NMA) is commonly used in evidence synthesis; however, in situations in which there are a large number of treatment options, which may be subdivided into classes, and relatively few trials, NMAs produce considerable uncertainty in the estimated treatment effects, and consequently, identification of the most beneficial intervention remains inconclusive. OBJECTIVE: To develop and demonstrate the use of evidence synthesis methods to evaluate extensive treatment networks with a limited number of trials, making use of classes. METHODS: Using Bayesian Markov chain Monte Carlo methods, we build on the existing work of a random effects NMA to develop a three-level hierarchical NMA model that accounts for the exchangeability between treatments within the same class as well as for the residual between-study heterogeneity. We demonstrate the application of these methods to a continuous and binary outcome, using a motivating example of overactive bladder. We illustrate methods for incorporating ordering constraints in increasing doses, model selection, and assessing inconsistency between the direct and indirect evidence. RESULTS: The methods were applied to a data set obtained from a systematic literature review of trials for overactive bladder, evaluating the mean reduction in incontinence episodes from baseline and the number of patients reporting one or more adverse events. The data set involved 72 trials comparing 34 interventions that were categorized into nine classes of interventions, including placebo. CONCLUSIONS: Bayesian three-level hierarchical NMAs have the potential to increase the precision in the effect estimates while maintaining the interpretability of the individual interventions for decision making.
机译:背景:网络荟萃分析(NMA)通常用于证据综合。但是,在存在大量治疗方案的情况下,可以将其细分为几类,并且进行相对较少的试验,NMA在估计的治疗效果方面产生了很大的不确定性,因此,确定最有益的干预措施尚无定论。目的:开发和演示证据合成方法的使用,以有限的试验次数和类别来评估广泛的治疗网络。方法:使用贝叶斯马尔可夫链蒙特卡洛方法,我们在随机效应NMA的现有工作基础上,开发了一个三级分层NMA模型,该模型考虑了同一类别内的治疗之间的可交换性以及研究之间的残差。异质性。我们以膀胱过度活跃为例,演示了这些方法在连续和二元结果中的应用。我们举例说明了在增加剂量,模型选择以及评估直接证据和间接证据之间的不一致时纳入排序约束的方法。结果:该方法应用于从膀胱活动过度试验的系统文献回顾中获得的数据集,评估了尿失禁发作相对于基线的平均减少以及报告一个或多个不良事件的患者人数。该数据集涉及72个试验,比较了34种干预措施,这些干预措施分为9类干预措施,包括安慰剂。结论:贝叶斯三级分级NMA可以提高效果估计的准确性,同时保持各个决策干预措施的可解释性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号